
“Numerorum
congruentiam
hoc signo,  =, in
posterum  deno-
tabimus, modulum
ubi opus erit  in
clausulis adiun-
gentes, -16 G 9
(mod. 5), -7 =
15 (mod. ll).”
-C. F. Gauss 11151
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e = RRLRRLR.... Excellent approximations can be found in this way. For
example, g M 2.718280 agrees with e to six decimal places; we obtained this
fraction from the first 19 letters of e’s Stern-Brocot representation, and the
accuracy is about what we would get with 19 bits of e’s binary representation.

We can find the infinite representation of an irrational number a b y  a
simple modification of the matrix-free binary search procedure:

if OL  < 1 then (output(L); OL  := au/(1  -K))

else (output(R); 01  := (x- 1)  .

(These steps are to be repeated infinitely many times, or until we get tired.)
If a is rational, the infinite representation obtained in this way is the same as
before but with RLm appended at the right of 01’s  (finite) representation. For
example, if 01=  1, we get RLLL . . . , corresponding to the infinite sequence of
fractions  1 Z 3 4  5,,  ,’ 2’ 3’ 4’ *..I which approach 1 in the limit. This situation is
exactly analogous to ordinary binary notation, if we think of L as 0 and R as 1:
Just as every real number x in [O,  1) has an infinite binary representation
(.b,bZb3..  . )z not ending with all l’s, every real number K in [O,  00) has
an infinite Stern-Brocot representation B1  B2B3  . . . not ending with all R’s.
Thus we have a one-to-one order-preserving correspondence between [0, 1)
and [0, co) if we let 0 H L and 1 H R.

There’s an intimate relationship between Euclid’s algorithm and the
Stern-Brocot representations of rationals. Given OL = m/n, we get Lm/nJ
R’s, then [n/(m  mod n)]  L’s, then [(m  mod n)/(n mod (m mod n))] R’s,

and so on. These numbers m mod n, n mod (m mod n), . . . are just the val-
ues examined in Euclid’s algorithm. (A little fudging is needed at the end
to make sure that there aren’t infinitely many R’s.) We will explore this
relationship further in Chapter 6.

4.6 ‘MOD’: THE CONGRUENCE RELATION
Modular arithmetic is one of the main tools provided by number

theory. We got a glimpse of it in Chapter 3 when we used the binary operation
‘mod’, usually as one operation amidst others in an expression. In this chapter
we will use ‘mod’ also with entire equations, for which a slightly different
notation is more convenient:

a s b (mod m) a m o d m  =  b m o d m . (4.35)

For example, 9 = -16 (mod 5), because 9 mod 5 = 4 = (-16) mod 5. The
formula ‘a = b (mod m)’ can be read “a is congruent to b modulo ml’ The
definition makes sense when a, b, and m are arbitrary real numbers, but we
almost always use it with integers only.
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Since x mod m differs from x by a multiple of m, we can understand
congruences in another way:

a G b (mod m) a - b is a multiple of m. (4.36)

For if a mod m = b mod m, then the definition of ‘mod’ in (3.21) tells us
that a - b = a mod m + km - (b mod m + Im)  = (k - l)m  for some integers
k and 1. Conversely if a - b = km, then a = b if m = 0; otherwise

a mod m = a - [a/m]m  = b + km - L(b  + km)/mjm
= b-[b/mJm  = bmodm.

The characterization of = in (4.36) is often easier to apply than (4.35). For
example, we have 8 E 23 (mod 5) because 8 - 23 = -15 is a multiple of 5; we
don’t have to compute both 8 mod 5 and 23 mod 5.

The congruence sign ‘ E ’ looks conveniently like ’ = ‘,  because congru- “I fee/ fine  today
ences  are almost like equations. For example, congruence is an equivalence modulo a slight

relation; that is, it satisfies the reflexive law ‘a = a’, the symmetric law headache.”
- The Hacker’s

‘a 3 b =$  b E a’, and the transitive law ‘a E b E c j a E c’.
All these properties are easy to prove, because any relation ‘E’ that satisfies
‘a E b c--J  f(a) = f(b)’ for some function f is an equivalence relation. (In
our case, f(x) = x mod m.) Moreover, we can add and subtract congruent
elements without losing congruence:

Dictionary 12771

a=b a n d  c=d * a+c 3 b+d (mod m)  ;
a=b a n d  c=d ===+ a - c  z b - d (mod m) .

For if a - b and c - d are both multiples of m, so are (a + c) - (b + d) =
(a - b) + (c - d) and (a - c) - (b - d) = (a -b) - (c - d). Incidentally, it
isn’t necessary to write ‘(mod m)’ once for every appearance of ‘ E ‘; if the
modulus is constant, we need to name it only once in order to establish the
context. This is one of the great conveniences of congruence notation.

Multiplication works too, provided that we are dealing with integers:

a E b and c = d I ac E bd (mod  4,
integers b, c.

Proof: ac - bd = (a - b)c + b(c - d). Repeated application of this multipli-
cation property now allows us to take powers:

a-b + a” E b” (mod  ml, integers a, b;
integer n 3 0.
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For example, since 2 z -1 (mod 3),  we have 2n G (-1)”  (mod 3); this means
that 2” - 1 is a multiple of 3 if and only if n is even.

Thus, most of the algebraic operations that we customarily do with equa-
tions can also be done with congruences. Most, but not all. The operation
of division is conspicuously absent. If ad E bd (mod m), we can’t always
conclude that a E b. For example, 3.2 G 5.2 (mod 4),  but 3 8 5.

We can salvage the cancellation property for congruences, however, in
the common case that d and m are relatively prime:

ad=bd  _ a=b (mod  4, (4.37)
integers a, b, d, m and d I m.

For example, it’s legit  to conclude from 15 E 35 (mod m) that 3 E 7 (mod m),
unless the modulus m is a multiple of 5.

To prove this property, we use the extended gcd law (4.5) again, finding
d’ and m’ such that d’d + m’m = 1. Then if ad E bd we can multiply
both sides of the congruence by d’, obtaining ad’d E bd’d. Since d’d G 1,
we have ad’d E a and bd’d E b; hence a G b. This proof shows that the
number d’ acts almost like l/d when congruences are considered (mod m);
therefore we call it the “inverse of d modulo m!’

Another way to apply division to congruences is to divide the modulus
as well as the other numbers:

a d  = b d  ( m o d m d )  +=+  a  = b  ( m o d m ) ,  ford#O. (4.38)

This law holds for all real a, b, d, and m, because it depends only on the
distributive law (a mod m) d = ad mod md: We have a mod m = b mod m
e (a mod m)d = (b mod m)d H ad mod md = bd mod md. Thus,
for example, from 3.2 G 5.2 (mod 4) we conclude that 3 G 5 (mod 2).

We can combine (4.37) and (4.38) to get a general law that changes the
modulus as little as possible:

ad E bd (mod m)

H a=b (m o d
m

>gcd(d,  ml ’
integers a, b, d, m. (4.39)

For we can multiply ad G bd by d’, where d’d+  m’m = gcd( d, m); this gives
the congruence a. gcd( d, m) z b. gcd( d, m) (mod m), which can be divided
by  gc44  ml.

Let’s look a bit further into this idea of changing the modulus. If we
know that a 3 b (mod loo), then we also must have a E b (mod lo), or
modulo any divisor of 100. It’s stronger to say that a - b is a multiple of 100
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than to say that it’s a multiple of 10. In general,

a E b (mod md) j a = b (mod m) , integer d, (4.40)

because any multiple of md is a multiple of m.
Conversely, if we know that a ‘=  b with respect to two small moduli, can Modulitos?

we conclude that a E b with respect to a larger one? Yes; the rule is

a E b (mod m) and a z b (mod n)

++ a=b (mod lcm(m, n)) , integers m, n > 0. (4.41)

For example, if we know that a z b modulo 12 and 18, we can safely conclude
that a = b (mod 36). The reason is that if a - b is a common multiple of m
and n, it is a multiple of lcm( m, n).  This follows from the principle of unique
factorization.

The special case m I n of this law is extremely important, because
lcm(m, n) = mn when m and n are relatively prime. Therefore we will state
it explicitly:

a E b (mod mn)

w a-b (mod m) and a = b (mod n), if min. (4.42)

For example, a E b (mod 100) if and only if a E b (mod 25) and a E b
(mod 4). Saying this another way, if we know x mod 25 and x mod 4, then
we have enough facts to determine x mod 100. This is a special case of the
Chinese Remainder Theorem (see exercise 30), so called because it was
discovered by Sun Tsfi in China, about A.D. 350.

The moduli m and n in (4.42)  can be further decomposed into relatively
prime factors until every distinct prime has been isolated. Therefore

a=b(modm) w arb(modp”p)  f o r a l l p ,

if the prime factorization (4.11) of m is nP  pm”. Congruences modulo powers
of primes are the building blocks for all congruences modulo integers.

4.7 INDEPENDENT RESIDUES

One of the important applications of congruences is a residue num-
ber system, in which an integer x is represented as a sequence of residues (or
remainders) with respect to moduli that are prime to each other:

Res(x)  = (x mod ml,. . . ,x mod m,) , if mj I mk for 1 6  j < k 6  r.

Knowing x mod ml, . . . , x mod m, doesn’t tell us everything about x. But
it does allow us to determine x mod m, where m is the product ml . . . m,.
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In practical applications we’ll often know that x lies in a certain range; then
we’ll know everything about x if we know x mod m and if m is large enough.

For example, let’s look at a small case of a residue number system that
has only two moduli, 3 and 5:

x mod 15 cmod3 (mod5

0 0 0
1 1 1
2 2 2
3 0 3
4 1 4
5 2 0
6 0 1
7 1 2
8 2 3
9 0 4
10 1 0
11 2 1
12 0 2
13 1 3
14 2 4

Each ordered pair (x mod 3, x mod 5) is different, because x mod 3 = y mod 3
andxmod5=ymod5ifandonlyifxmod15=ymod15.

We can perform addition, subtraction, and multiplication on the two
components independently, because of the rules of congruences. For example,
if we want to multiply 7 = (1,2)  by 13 = (1,3)  modulo 15, we calculate
l.lmod3=1and2.3mod5=1.  Theansweris(l,l)=l;hence7.13mod15
must equal 1. Sure enough, it does.

For  example, the
Mersenne prime
23'-l

works well.

This independence principle is useful in computer applications, because
different components can be worked on separately (for example, by differ-
ent computers). If  each modulus mk is a distinct prime pk, chosen to be
slightly less than 23’, then a computer whose basic arithmetic operations
handle integers in the range L-2 3’ 23’) can easily compute sums, differences,,
and products modulo pk. A set of r such primes makes it possible to add,
subtract, and multiply “multiple-precision numbers” of up to almost 31 r bits,
and the residue system makes it possible to do this faster than if such large
numbers were added, subtracted, or multiplied in other ways.

We can even do division, in appropriate circumstances. For example,
suppose we want to compute the exact value of a large determinant of integers.
The result will be an integer D, and bounds on ID/  can be given based on the
size of its entries. But the only fast ways known for calculating determinants
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require division, and this leads to fractions (and loss of accuracy, if we resort
to binary approximations). The remedy is to evaluate D mod pk = Dk,  for
VSIiOUS  large primes pk. We can safely divide module  pk unless the divisor
happens to be a multiple of pk. That’s very unlikely, but if it does happen we
can choose another prime. Finally, knowing Dk for sufficiently many primes,
we’ll have enough information to determine D.

But we haven’t explained how to get from a given sequence of residues
(x mod ml,  . . . ,x  mod m,) back to x mod m. We’ve shown that this conver-
sion can be done in principle, but the calculations might be so formidable
that they might rule out the idea in practice. Fortunately, there is a rea-
sonably simple way to do the job, and we can illustrate it in the situation
(x mod 3,x mod 5) shown in our little table. The key idea is to solve the
problem in the two cases (1,O)  and (0,l);  for if (1,O)  = a and (0,l)  = b, then
(x, y) = (ax + by) mod 15, since congruences can be multiplied and added.

In our case a = 10 and b = 6, by inspection of the table; but how could
we find a and b when the moduli are huge? In other words, if m I n, what
is a good way to find numbers a and b such that the equations

amodm = 1, amodn = 0, bmodm = 0, bmodn = 1

all hold? Once again, (4.5) comes to the rescue: With Euclid’s algorithm, we
can find m’ and n’ such that

m’m+n’n = 1.

Therefore we can take a = n’n and b = m’m, reducing them both mod mn
if desired.

Further tricks are needed in order to minimize the calculations when the
moduli are large; the details are beyond the scope of this book, but they can
be found in [174, page 2741.  Conversion from residues to the corresponding
original numbers is feasible, but it is sufficiently slow that we save total time
only if a sequence of operations can all be done in the residue number system
before converting back.

Let’s firm up these congruence ideas by trying to solve a little problem:
How many solutions are there to the congruence

x2 E 1 (mod m) , (4.43)

if we consider two solutions x and x’ to be the same when x = x’?
According to the general principles explained earlier, we should consider

first the case that m is a prime power, pk, where k > 0. Then the congruence
x2  = 1 can be written

(x-1)(x+1)  = 0 (modpk),
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so p must divide either x - 1 or x + 1, or both. But p can’t divide both
x - 1 and x + 1 unless p = 2; we’ll leave that case for later. If p > 2, then
pk\(x  - 1)(x  + 1) w pk\(x  - 1) or pk\(x  + 1); so there are exactly two
solutions, x = +l and x = -1.

The case p = 2 is a little different. If 2k\(~  - 1 )(x + 1) then either x - 1
or x + 1 is divisible by 2 but not by 4, so the other one must be divisible
by 2kP’. This means that we have four solutions when k 3  3, namely x = *l
and x = 2k-’  f 1. (For example, when pk  = 8 the four solutions are x G 1, 3,
5, 7 (mod 8); it’s often useful to know that the square of any odd integer has
the form 8n  + 1.)

All primes are odd
except 2, which is
the oddest of all.

Now x2 = 1 (mod m) if and only if x2 = 1 (mod pm”  ) for all primes p
with mP > 0 in the complete factorization of m. Each prime is independent
of the others, and there are exactly two possibilities for x mod pm”  except
when p = 2. Therefore if n  has exactly r different prime divisors, the total
number of solutions to x2 = 1 is 2’, except for a correction when m. is even.
The exact number in general is

2~+[8\ml+[4\ml-[Z\ml (4.44)

For example, there are four “square roots of unity modulo 12,” namely 1, 5,
7, and 11. When m = 15 the four are those whose residues mod 3 and mod 5
are fl, namely (1, l), (1,4),  (2, l), and (2,4)  in the residue number system.
These solutions are 1, 4, 11,  and 14 in the ordinary (decimal) number system.

4.8 ADDITIONAL APPLICATIONS

There’s some unfinished business left over from Chapter 3: We wish
to prove that the m numbers

O m o d m ,  n m o d m ,  2nmodm,  .  .  .  .  ( m - 1 ) n m o d m (4.45)

consist of precisely d copies of the m/d numbers

0, d, 2d, . . . . m-d

in some order, where d = gcd(m,  n).  For example, when m = 12 and n  =  8
we have d = 4, and the numbers are 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4.

The first part of the proof-to show that we get d copies of the first
Mathematicians love m/d values-is now trivial. We have
to say that things
are trivial. jn = kn (mod m) j(n/d)  s k(n/d)  (mod m/d)

by (4.38); hence we get d copies of the values that occur when 0 6  k < m/d.
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Now we must show that those m/d numbers are (0,  d,2d,.  . . , m - d}
in some order. Let’s write m = m’d and n = n’d. Then kn mod m =
d(kn’ mod m’), by the distributive law (3.23); so the values that occur when
0 6 k < m’ are d times the numbers

0 mod m’, n’ mod m’, 2n’ mod m’, . . . , (m’ - 1 )n’  mod m’ .

But we know that m’ I n’ by (4.27); we’ve divided out their gtd. Therefore
we need only consider the case d = 1, namely the case that m and n are
relatively prime.

So let’s assume that m I n. In this case it’s easy to see that the numbers
(4.45) are just {O,  1, . . . , m - 1 } in some order, by using the “pigeonhole
principle!’ This principle states that if m pigeons are put into m pigeonholes,
there is an empty hole if and only if there’s a hole with more than one pigeon.
(Dirichlet’s box principle, proved in exercise 3.8, is similar.) We know that
the numbers (4.45) are distinct, because

jn z kn (mod m) j s k (mod m)

when m I n; this is (4.37). Therefore the m different numbers must fill all the
pigeonholes 0, 1, . . . , m - 1. Therefore the unfinished business of Chapter 3
is finished.

The proof is complete, but we can prove even more if we use a direct
method instead of relying on the indirect pigeonhole argument. If m I n and
if a value j E [0, m) is given, we can explicitly compute k E [O, m) such that
kn mod m = j by solving the congruence

kn E j (mod m)

for k. We simply multiply both sides by n’, where m’m + n’n = 1, to get

k E jn’ [mod m) ;

hence k = jn’ mod m.
We can use the facts just proved to establish an important result discov-

ered by Pierre de Fermat in 1640. Fermat was a great mathematician who
contributed to the discovery of calculus and many other parts of mathematics.
He left notebooks containing dozens of theorems stated without proof, and
each of those theorems has subsequently been verified-except one. The one
that remains, now called “Fermat’s Last Theorem,” states that

a” + b” # c” (4.46)
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(NEWSF L A S H ]

Euler 1931 con-
jectured that
a4 + b4 + c4  # d4,
but Noam  Elkies
found infinitely
many solutions in
August, 1987.
Now Roger Frye has
done an exhaustive
computer search,
proving (aRer  about
I19  hours on a Con-
nection Machine)
that the smallest
solution is:
958004  +2175194

+4145604
= 4224814.

‘I.  laquelfe  propo-
sition, si efle  est
vraie, est de t&s
grand usage.”
-P. de Fermat 1971

for all positive integers a, b, c, and n, when n > 2. (Of course there are lots
of solutions to the equations a + b = c and a2 + b2  = c2.)  This conjecture
has been verified for all n 6 150000 by Tanner and Wagstaff  [285].

Fermat’s theorem of 1640 is one of the many that turned out to be prov-
able. It’s now called Fermat’s Little Theorem (or just Fermat’s theorem, for
short), and it states that

np-’ = 1 (modp), ifnIp. (4.47)

Proof: As usual, we assume that p denotes a prime. We know that the
p-l numbersnmodp,2nmodp,  . . . . (p - 1 )n mod p are the numbers 1, 2,
.“, p - 1 in some order. Therefore if we multiply them together we get

n.  (2n).  . . . . ((p - 1)n)
E (n mod p) . (2n mod p) . . . . . ((p - 1)n mod p)

5 (p-l)!,

where the congruence is modulo p. This means that

(p - l)!nP-’  = (p-l)!  (modp),

and we can cancel the (p - l)! since it’s not divisible by p. QED.
An alternative form of Fermat’s theorem is sometimes more convenient:

np = n- (mod  P)  , integer n. (4.48)

This congruence holds for all integers n. The proof is easy: If n I p we
simply multiply (4.47) by n. If not, p\n,  so np 3 0 =_ n.

In the same year that he discovered (4.47),  Fermat wrote a letter to
Mersenne, saying he suspected that the number

f, = 22" +l

would turn out to be prime for all n 3 0. He knew that the first five cases
gave primes:

2'+1 = 3; 2'+1 = 5; 24+1 = 17; 28+1 = 257; 216+1 = 65537;

but he couldn’t see how to prove that the next case, 232  + 1 = 4294967297,
would be prime.

It’s interesting to note that Fermat could have proved that 232  + 1 is not
prime, using his own recently discovered theorem, if he had taken time to
perform a few dozen multiplications: We can set n = 3 in (4.47),  deducing
that

p3’  E 1 (mod 232  + l), if 232  + 1 is prime.
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And it’s possible to test this, relation by hand, beginning with 3 and squaring
32 times, keeping only the remainders mod 232  + 1. First we have 32 = 9, If  this is Fermat’s

then 32;’  = 81, then 323 = 6561, and so on until we reach

32" s 3029026160 (mod 232  + 1) .

Little Theorem,
the other one was
last but not least.

The result isn’t 1, so 232  + 1 isn’t prime. This method of disproof gives us
no clue about what the factors might be, but it does prove that factors exist.
(They are 641 and 6700417.)

If 3232 had turned out to be 1, modulo 232  + 1, the calculation wouldn’t
have proved that 232  + 1 is prime; it just wouldn’t have disproved it. But
exercise 47 discusses a converse to Fermat’s theorem by which we can prove
that large prime numbers are prime, without doing an enormous amount of
laborious arithmetic.

We proved Fermat’s theorem by cancelling (p - 1 )! from both sides of a
congruence. It turns out that (p - I)! is always congruent to -1, modulo p;
this is part of a classical result known as Wilson’s theorem:

( n - -  I)! 3  - 1  ( m o d  n ) n is prime, ifn>l. (4.49)

One half of this theorem is trivial: If n > 1 is not prime, it has a prime
divisor p that appears as a factor of (n - l)!, so (n - l)! cannot be congruent
to -1. (If (n- 1 )! were congruent to -1 modulo n, it would also be congruent
to -1 modulo p, but it isn’t.)

The other half of Wilso’n’s theorem states that (p - l)! E -1 (mod p).
We can prove this half by p,airing up numbers with their inverses mod p. If
n I p, we know that there exists n’ such that

n’n +i 1 (mod P);

here n’ is the inverse of n, and n is also the inverse of n’. Any two inverses
of n must be congruent to each other, since nn’ E nn” implies n’ c n”. ff p is prime, is p'

Now suppose we pair up each number between 1 and p-l with its inverse. prime  prime?
Since the product of a number and its inverse is congruent to 1, the product
of all the numbers in all pairs of inverses is also congruent to 1; so it seems
that (p -- l)! is congruent to 1. Let’s check, say for p = 5. We get 4!  = 24;
but this is congruent to 4, not 1, modulo 5. Oops- what went wrong? Let’s
take a closer look at the inverses:

1’ := 1) 2' = 3, 3' = 2, 4' = 4.

Ah so; 2 and 3 pair up but 1 and 4 don’t-they’re their own inverses.
To resurrect our analysis we must determine which numbers are their

own inverses. If x is its own inverse, then x2  = 1 (mod p); and we have
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“ 5 fuerit  N ad x
numerus primus
et n numerus
partium ad N
primarum,  turn
potestas xn  unitate
minuta  semper per
numerum  N erit
divisibilis.”

-L. Euler [89]

already proved that this congruence has exactly two roots when p > 2. (If
p = 2 it’s obvious that (p - l)! = -1, so we needn’t worry about that case.)
The roots are 1 and p - 1, and the other numbers (between 1 and p - 1) pair
up; hence

(p-l)! E l.(p-1)  = -1,

as desired.
Unfortunately, we can’t compute factorials efficiently, so Wilson’s theo-

rem is of no use as a practical test for primality. It’s just a theorem.

4.9 PHI AND MU
How many of the integers (0,  1, . . . , m-l} are relatively prime to m?

This is an important quantity called cp(m), the “totient” of m (so named by
J. J. Sylvester [284],  a British mathematician who liked to invent new words).
We have q(l)  = 1, q(p)  = p - 1, and cp(m) < m- 1 for all composite
numbers m.

The cp  function is called Euler’s totient j’unction,  because Euler was the
first person to study it. Euler discovered, for example, that Fermat’s theorem
(4.47) can be generalized to nonprime moduli in the following way:

nVp(m)  = 1 (mod m) , ifnIm. (4.50)

(Exercise 32 asks for a proof of Euler’s theorem.)
If m is a prime power pk, it’s easy to compute cp(m), because n I pk H

p%n. The multiples of p in {O,l,...,pk  -l}  are {0,p,2p,...,pk  -p};  hence
there are pk-'  of them, and cp(pk)  counts what is left:

cp(pk)  = pk - pk-’

Notice that this formula properly gives q(p)  = p - 1 when k = 1.
If m > 1 is not a prime power, we can write m = ml rn2 where ml I m2.

Then the numbers 0 6 n < m can be represented in a residue number system
as (n mod ml,  n mod ml).  We have

nlm nmodml  I ml and nmod ml I rn2

by (4.30) and (4.4). Hence, n mod m is “good” if and only if n mod ml
and n mod rn2 are both “good,” if we consider relative primality to be a
virtue. The total number of good values modulo m can now be computed,
recursively: It is q(rnl )cp(mz),  because there are cp(ml ) good ways to choose
the first component n mod ml and cp(m2) good ways to choose the second
component n mod rn2 in the residue representation.


